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Abstract
We obtain a Lancret-type theorem for null generalized helices in Lorentz–
Minkowski spaces L

n. In L
3 we find that the only null generalized helices are

the ordinary null helices. However, in L
5 we have to consider two types of null

generalized helices according to whether the axis is non-null or null. In both
cases we obtain the solutions to the natural equations problem.

PACS number: 02.40.−k
Mathematics Subject Classification: 53B30, 53C50, 53A04

1. Introduction

A generalized helix in R
3 is a curve of constant slope, in other words, a curve whose tangent

makes a constant angle with a fixed direction (called the axis). Further, it is a curve whose
tangent indicatrix is a planar curve. The study of these curves in R

3 dates from 1802 when
Lancret stated that ‘a curve is a generalized helix if and only if the ratio of curvature to torsion
is constant’ (see [15] for the details).

The n-dimensional case (n odd) was considered by Hayden in 1931 (see [10]), who called
a generalized helix a curve satisfying that the ratios κ2i/κ2i−1 are constant, κ1, κ2, . . . , κn−1

being the curvatures of the curve. Hayden proved in [10, 11] that a curve is a generalized helix
if there exists a parallel vector field lying in the osculating space of the curve which makes
constant angles with the tangent and the principal normals.

The Lancret theorem was revisited and solved by Barros (see [2]) in three-dimensional
real space forms by using Killing vector fields along curves. Recently, new improvements have
been achieved in Lorentzian space forms. In [3], a non-null curve immersed in L

3 is called
a generalized helix if its tangent indicatrix is laid in a plane. Then according to the causal
character of this plane the authors have to distinguish between degenerate and non-degenerate
generalized helices and show the corresponding Lancret theorem.

To point out the interest of non-null generalized helices it should be mentioned that they
arise in the context of the interplay between geometry and integrable Hamiltonian systems
(see [12, 13]). In [4], we have found parametrized solutions of the localized induction
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equation ∂γ /∂s = ∂γ /∂t × ∂2γ /∂t2 (LIE) in the three-dimensional Lorentzian space forms,
so that the soliton solutions are the null geodesics of the Lorentzian cylinders or B-scrolls.
Therefore, there is a natural geometric evolution on generalized helices inducing a modified
Korteweg–de Vries curvature evolution equation coming from LIE. The role of generalized
helices here is probably similar to that of curves of constant torsion or constant natural curvature
(see [13]). In [8], we propose the equation ∂γ /∂s = ∂2γ /∂t2×∂3γ /∂t3×· · ·×∂nγ /∂tn as the
corresponding LIE for null curves γ (t) = γ (t, 0) in the n-dimensional Lorentz–Minkowski
space. Then we find that null generalized helices in L

n evolving in the axis direction are
solutions of the null LIE.

Other applications of generalized helices can be found in [14], where the author proposed
a mathematical model of the auditory process in the cochlea that does not neglect the effect
of cochlea coiling, and [9], where the authors obtained, for inhomogeneous electromagnetic
waves in isotropic media, the operator evolution solutions of Maxwell equations; in the case
of homogeneous waves an evolution operator is associated with a set of right-handed and
left-handed generalized helices.

It is well known that in the geometry of null curves the natural parameter is the pseudo-arc
(see [5, 18]). In [7], we generalize the results of Bonnor by introducing a Frenet frame (which
we call the Cartan frame) along a null curve with the minimun number of curvature functions
and classify null helices. In this paper, we use the Cartan frame (and the Cartan curvatures)
introduced there to define and study null generalized helices in L

n (some results for null curves
in three-dimensional spaces are obtained in [1]).

This paper is organized as follows. First, we recall the Cartan frames for null curves in an
orientable Lorentzian manifold and obtain similar equations for spacelike curves in lightlike
totally geodesic submanifolds in a Lorentzian space form. By using those equations, in the
next section we define the null generalized helices in odd-dimensional spaces and obtain a
Lancret-type theorem (see theorem 4). In section 4, we find that the only generalized helices
in L

3 are the ordinary helices (proposition 5). Furthermore, we get a characterization of
null generalized helices in L

5 (theorem 7). From there we can solve the natural equations
problem for generalized helices with non-degenerate axis (theorem 8). Finally, the existence
and properties of null generalized helices with null axis in L

5 are considered (theorem 9), as
well as the solution of the natural equations problem (theorem 10).

2. Frenet equations

Throughout this paper we will follow the notation and terminology stated in [7]. Let Mn
1 be

an orientable Lorentzian manifold and let γ : I ⊂ R → Mn
1 be a null curve parametrized by

the pseudo-arc. We have the following result.

Theorem 1 [7]. Assume that {γ ′(t), γ ′′(t), . . . , γ (n)(t)} is a basis of Tγ (t)M
n
1 for all t. Then

there exists exactly one Frenet frame {L,W1, N,W2, . . . ,Wm},m = n − 2, satisfying the
equations

L′ = W1

W ′
1 = −k1L + N

N ′ = −k1W1 + k2W2

W ′
2 = k2L + k3W3

W ′
i = −kiWi−1 + ki+1Wi+1 i ∈ {3, . . . ,m − 1}

W ′
m = −kmWm−1

(1)
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and fulfilling

(i) {γ ′, γ ′′, . . . , γ (i)} and {L,W1, N,W2, . . . ,Wi−2} have the same orientation for 1 � i �
m − 1,

(ii) {L,W1, N,W2, . . . ,Wm} is positively oriented.

Furthermore, the curvature functions satisfy ki > 0 for all i � 2.

The above Frenet frame and curvature functions are called the Cartan frame and the
Cartan curvatures of the null curve γ . In this case γ is called a null Cartan curve.

2.1. Frenet frames for spacelike curves in lightlike totally geodesic submanifolds of a
Lorentzian space form

Let Nm be a lightlike totally geodesic submanifold in an oriented Lorentzian manifold Mn
1 and

let β : J ⊂ R → Nm be a spacelike curve. Let us assume that {β ′(s), . . . , β(m)(s)} is a basis of
Tβ(s)N

m, where s stands for the arc-length parameter. Write Ei(s) = span{β ′(s), . . . , β(i)(s)},
for 1 � i � m, and assume that dim rad(Ei(s)) is constant for all s ∈ J , where rad(Ei) =
{ξ ∈ Ei | g(ξ, v) = 0, v ∈ Ei}. Since β is contained in a lightlike submanifold, there exists an
index 1 � i0 � m such that dim rad

(
Ei0

) = 1. Let us denote r = min{i | dim rad(Ei) = 1},
then r > 1 because β is spacelike, and dim rad(Ej ) = 1 for j > r .

Now we construct a Frenet frame for this kind of curve. The first vector will be
T (s) = β ′(s). As in the non-degenerate case, and using the Gram–Schmidt method applied
to Er−1, we can construct a set of orthonormal spacelike vectors {T , V1, . . . , Vr−2} such that
Ej+1 = span{T , V1, . . . , Vj }, for 1 � j � r − 2. Since dim rad(Er) = 1, we can find a
vector L (not unique) such that Er is the orthogonal direct sum of Er−1 and span{L}. A
straightforward computation shows that the following equations hold:

T ′ = ρ1V1

V ′
1 = −ρ1T + ρ2V2

V ′
i = −ρiVi−1 + ρi+1Vi+1 2 � i � r − 3

V ′
r−2 = −ρr−2Vr−3 + ρr−1L

(2)

where ρj : J → R are differentiable functions and ( )′ denotes a covariant derivative in Nm,
which in this case agrees with the covariant derivative of the ambient space Mn

1 .
Now it is easy to see that r = m and the Frenet frame is {T , V1, . . . , Vm−2,L}. This

frame, as in the non-degenerate case, can be constructed in a unique way (up to orientation)
except L. The vector L can be arbitrarily chosen depending on each situation; a good choice
is ρm−1 = ±1. In any case we need at least m − 1 curvature functions in order to completely
determine the curve. Moreover, the most natural criterion to choose the orientation is achieved
by considering that {β ′, . . . , β(i+1)} and {T , V1, . . . , Vi}, 1 � i � m − 2 have the same
orientation, and that {T , V1, . . . , Vm−2,L} is positively oriented.

The following theorems of existence, uniqueness and congruence can be proved in a
similar way as in [7]. Here Mn

1 (c) denotes a Lorentzian space form of constant curvature c.

Theorem 2. Let ρ1, ρ2, . . . , ρm : [−ε, ε] → R be differentiable functions. Let Nm be a
lightlike totally geodesic submanifold of Mn

1 (c), p a point in Nm and consider a positively
oriented pseudo-orthonormal basic

{
T 0, V 0

1 , . . . , V 0
m−2,L0

}
of TpNm. Then there exists

a unique spacelike Cartan curve α in Mn
1 (c), contained in Nm with α(0) = p, whose

Cartan frame {T , V1, . . . , Vm−2,L} satisfies T (0) = T 0, Vj (0) = V 0
j (j = 1, . . . ,m − 2) and

L(0) = L0.
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Theorem 3. Let C and C̄ be two spacelike Cartan curves which are laid in a lightlike totally
geodesic submanifold Nm ⊂ Mn

1 (c), having Cartan curvatures {ρ1, . . . , ρm} in Nm. Then
there exists a Lorentzian transformation of Mn

1 (or Nm) which maps C into C̄.

3. Null generalized helices in L
n

In a similar way to the non-degenerate case (see [10, 11, 16, 17, 19, 20]), we present the
following definition.

Definition 1. A null Cartan curve γ : I → L
n (n = 2q + 3) is said to be a generalized helix

if there exists a non-zero constant vector v such that all the products 〈L(t), v〉 �= 0, 〈N(t), v〉
and 〈W2i+1(t), v〉 �= 0, 1 � i � q − 1 are constant.

In the non-degenerate case, the vectors appearing in the definition are unitary and the
constancy of the products implies that the curve γ makes a constant angle with some of the
vectors of the Cartan frame. The straight line generated by v, which can be spacelike, timelike
or lightlike, is uniquely determined and will be called the axis of γ . When v is a non-null
vector (i.e. spacelike or timelike), we can assume without loss of generality that v is unitary.

A classical result stated by Lancret in 1802 and first proved by de Saint Venant in 1845
(see [15] for the details) says that ‘a curve in R

3 is a generalized helix if and only if the ratio
of curvature to torsion is constant’. A straightforward computation from theorem 1 yields a
generalization of this result for null curves in L

n.

Theorem 4 (the Lancret theorem for null curves). Let γ : I → L
n be a null Cartan curve.

Then the following statements are equivalent:

(i) there exist constants {r, r1, . . . , rq} (ri �= 0) such that

k1(t) = r and k2i+1(t) = rik2i(t) for 1 � i � q n = 2q + 3.

(ii) γ is a generalized helix.

Proof. Let us write Ri as the constant
∏

j�i rj and consider the vector field along the curve
γ given by

v(t) = R1(rL + N) +
q−1∑
i=1

Ri+1W2i+1 + Wn−2.

Taking into account (1), statement (i) and the definition of Ri , we have that v(t) is a constant
vector. Moreover, it is easy to see that 〈v,L〉, 〈v,N〉 and 〈v,W2i+1〉 are constant, and this
concludes the first part of the proof.

Conversely, let v be the axis. Then it is not difficult to see that v is orthogonal to
W2i+2, 1 � i � q − 1, so we can write

v = 	0L + 	1N +
q∑

i=1

	2i+1W2i+1

for certain functions 	j . From the hypothesis we easily deduce that all 	j are constant. Finally,
from v′(t) = 0 we get

k1 = 	0

	1
= r k2i+1 = 	2i−1

	2i+1
k2i = rik2i

and the proof is complete. �
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Table 1. Different types of helices, up to congruences, in L
3.

Curve Curvature Axis

γ (t) =
(
− t

σ
, 1

σ 2 sin σ t, 1
σ 2 cos σ t

)
k = 1

2 σ 2 > 0 v = (1, 0, 0) timelike

γ (t) =
(

1
ω2 sinh ωt, 1

ω2 cosh ωt,− t
ω

)
k = − 1

2 ω2 < 0 v = (0, 0, 1) spacelike

γ (t) =
(

t3

4 + t
3 , t2

2 , t3

4 − t
3

)
k = 0 v = (1, 0, 1) null

4. Null generalized helices in low dimensions

4.1. The three-dimensional case

A null Cartan curve γ : I → L
3 is a generalized helix if there exists a nonzero constant vector

v such that 〈γ ′, v〉 is constant. This means that the tangent indicatrix is laid in a plane, or
in other words, there exists a nonzero vector v in L

3 which is orthogonal to the acceleration
vector field of γ . The following result is an easy consequence of theorem 4.

Proposition 5. Let γ : I → L
3 be a null Cartan curve. Then γ is a generalized helix if and

only if γ is a Cartan helix.

It is well known that, up to congruences, there are exactly three types of helices, according
to their curvature function (or axis) (see table 1).

4.2. The five-dimensional case with non-null axis

A null Cartan curve γ : I → L
5 is a generalized helix if there exists a nonzero constant vector

v satisfying that 〈v,L〉 and 〈v,N〉 are constant. Let v be a unit vector and set 〈v, v〉 = ε. Let
� denote the hyperplane orthogonal to v, P the projection map onto the hyperplane � and
β̄ = P(γ ) the projected curve. Then we can write

γ (t) = β̄(t) + µ̄(t)v (3)

where µ̄ : I → R is a non-constant differentiable function. By differentiating we have
〈β̄ ′(t), β̄ ′(t)〉 = −µ̄′(t)2ε so that β̄ is spacelike (resp. timelike) according to v is timelike
(resp. spacelike). Let β : J → � be the arc-length parametrization of β̄ with curvature
functions k̃1, k̃2 and k̃3. A straightforward computation leads to the following result.

Lemma 6. Let γ be a null Cartan curve in L
5 and let β be the orthogonal projection of γ onto

a non-degenerate hyperplane �. Let us denote by t and s the pseudo-arc and arc parameters
of γ and β, respectively. Then s and t are linearly related if and only if the first curvature k̃1

of β is constant. Moreover, in this case, k1 is constant if and only if k̃2 is constant.

We are ready to obtain a relationship between null generalized helices in L
5 with non-

degenerate axis and non-degenerate curves in a hyperplane of L
5.

Theorem 7. Let γ be a null Cartan curve in L
5, v a constant unit vector, � the hyperplane

orthogonal to v in L
5 and β the projection of γ onto �. Then γ is a generalized helix with

axis v if and only if β is a curve in � with constant curvature and torsion.

Proof. From lemma 6, to prove the first implication we only need to show that s and t are
linearly related. It is not difficult to see that λt ′(s) = εµ′(s) = ε, where 〈L, v〉 = λ is
constant, so we deduce that t (s) is a linear function.
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Conversely, let us assume that k̃1 and k̃2 are constant. From lemma 6 we have that t and s
are linearly related, and k1 is constant. A straightforward computation relating the curvatures
of γ and β leads to k3 = rk2 with r2 = k̃1

/
k̃2

2, and this concludes the proof. �

As a consequence, we have

Theorem 8 (solving natural equations for generalized helices with non-degenerate axis). Let
γ be a null Cartan curve in L

5. Then γ is a generalized helix with non-degenerate axis if and
only if it is a null geodesic of a Lorentzian cylinder constructed on a non-degenerate curve in
R

4 or L
4 with constant curvature and torsion.

4.3. The five-dimensional case with null axis

From now on, we will deal with null generalized helices with null axis. The main difficulty
now arises because the orthogonal hyperplane to the axis is also lightlike and there is no unique
way of projection.

Let v be the axis of the helix and let � be the orthogonal hyperplane, so that v ∈ �. From
the general theory of lightlike hypersurfaces (see [6]), we have the splitting

TpL
5 = Tp� ⊕ tr(Tp�) = (span{v} ⊥S(Tp�)) ⊕ tr(Tp�) for all p ∈ �

where ⊥ denotes orthogonal direct sum, tr(T �) = ∪p∈� tr(Tp�) is called a screen transversal
vector bundle and S(T �) = ∪p∈�S(Tp�) is called a screen distribution. Then each choice of
a screen distribution provides a projection map on �, so that the problem is finding a canonical
screen distribution (or the most canonical screen distribution in some sense).

Let γ : I → L
5 be a null generalized helix with the null axis v. Since 〈L, v〉 = λ is

constant, then L̃ = 1
λ
L is a transversal section along γ satisfying 〈L̃, v〉 = 1. Let β̄ denote

the projection of γ with respect to L̃, which is given by β̄(t) = γ (t) − 〈γ (t), v〉L̃(t). Since
〈γ ′(t), v〉 = λ, then 〈γ (t), v〉 = λ(t + σ) where σ is a constant, from which we have

β̄(t) = γ (t) − (t + σ)L(t). (4)

The Frenet equations (2) read as follows

T ′ = ρ1V1

V ′
1 = −ρ1T + ρ2V2

V ′
2 = −ρ2V1 + ρ3v

v′ = 0

(5)

where we have chosen L = v.

Theorem 9. Let γ be a null Cartan curve in L
5. If γ is a generalized helix with null axis v

and � denotes its lightlike orthogonal hyperplane, then the curvatures ρ1, ρ2 and ρ3 of the
projected spacelike curve β̄ satisfy

ρ1(s) = r̃√
s

and ρ3 = r̃1ρ2 (6)

for certain constants r̃ and r̃1. Conversely, if β̄ is a spacelike curve in a lightlike hyperplane
of L

5 whose curvatures satisfy (6), then there exists a null generalized helix γ in L
5 whose

projection onto � is just exactly β̄.

Proof. Let s denote the arc-length parameter of β̄, then (4) can be rewritten as

β(s) = γ (t (s)) − (t (s) + σ)L(t (s))
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where t stands for the pseudo-arc parameter of γ . Differentiating and using the Frenet
equations we get T (s) = −(t (s) + σ)t ′(s)W1(t (s)), from which we deduce that t ′(s) =
1/

√
σ 2 + 2(s + ω), for a constant ω. Without loss of generality, let us assume that σ = ω = 0.

Differentiating again and using that k1 is constant and k3 = r1k2, with r1 constant, we deduce

ρ1(s) =
√

k1√
s

ρ2(s) = k2(s)

2
√

k1
√

s
and ρ3(s) = − r1k2(s)√

2s
.

Then we can take r̃ = √
k1 and r̃1 = −√

2k1r1, and this concludes the first part of the proof.
Conversely, let β : J → � be a spacelike curve in a lightlike hyperplane � and put

� = span{v}⊥, where v is a null vector. The Frenet frame (5), with curvatures satisfying (6),
can be completed (in a unique way) to a basis of Tβ(s)L

5, for all s ∈ J , by adding a vector field
N (s) along β(s) such that 〈L,N 〉 = −1, 〈T ,N 〉 = 〈V1,N 〉 = 〈V2,N 〉 = 〈N ,N 〉 = 0. It
is easy to see that N ′(s) = ρ3(s)V2(s) = r̃1ρ2(s)V2(s). Then a straightforward computation
shows that the curve γ̄ given by

γ̄ (s) = β(s) +

√
s

r̃

(
V1(s) − r̃1

2
v − 1

r̃1
N (s)

)
is a null generalized helix with the axis v. Now let t be the pseudo-arc parameter of γ̄ and
put γ̄ (s) = γ (t (s)). By differentiating we get 〈γ̄ ′′(s), γ̄ ′′(s)〉 = t ′(s)4 = 1/4s2, and so
t ′(s) = 1/

√
2s. From here, a long and messy computation yields the Frenet frame of γ̄ :

L = 1√
2r̃

(
V1 − r̃1

2
v − 1

r̃1
N

)
W1 = −T

N = r̃√
2

(
V1 − r̃1

2
v − 1

r̃1
N

)
W2 = −V2

W3 = − r̃1

2
v +

1

r̃1
N .

These equations imply that γ̄ is a null generalized helix with curvatures given by

k1 = r̃2 k2 = 2r̃
√

sρ2 and k3 =
√

2
√

sρ2

which concludes the proof. �

Now let γ be a null generalized helix with null axis, whose curvatures satisfy k1(t) = r

and k3(t) = r1k2(t), then the axis is given by

v = −1

2

(
rL + N +

1

r1
W3

)
r = 1

2r2
1

.

Let us consider a timelike curve β : J → L
5 with Frenet frame {�, n1, n2, n3, n4} and

curvatures {k̃1, k̃2, k̃3, k̃4}, with �(s) = β ′(s), s standing for the arc parameter. Following
[11], the curve β is a generalized helix if there exists a nonzero constant vector v such that
the products 〈β ′, v〉 and 〈n2, v〉 are constant. In this case, the Lancret theorem assures us that
k̃2 = r̃1k̃1 and k̃4 = r̃3k̃3. Moreover, the axis is given by

v = 1

2

(
� +

1

r̃1
n2 +

1

r̃1r̃3
n4

)

where r̃1 =
√

1 + 1
/
r̃2

3 if the axis v is a null vector.
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Let us consider the surface S locally parametrized by X(s, ω) = β(s) + ωv. Then
Xs(s, ω) = �(s) and Xω = v, showing that S is a Lorentzian surface of L

5. The null geodesics
of S can be parametrized by

γ̄ (s) = β(s) − (s + σ)v (7)

where σ is a constant. Let t be the pseudo-arc parameter of γ̄ (as a curve in L
5), then a long

and messy computation, from equation (7), yields the following relations among the Cartan
curvatures of γ̄ and the generalized helix β:

k1(t (s)) = 1

2

k̃1(s)

r̃2
3

− 7

8

k̃′
1(s)

2

k̃1(s)3
+

1

2

k̃′′
1(s)

k̃1(s)2

k2(t (s)) =
√

1 + r̃2
3

r̃3
k̃2

3(s)

k3(t (s)) =
√

1 + r̃2
3

k̃1(s)
k̃3(s).

As a consequence, we obtain that γ̄ is a null generalized helix with null axis if and only if
k̃1(s) is constant. In this case, k1 = r = k̃1

/(
2r̃2

3

)
and r1 = r̃3/

√
k̃1. From here and using

the theorem of existence and uniqueness of timelike curves in L
5, we can prove the following

theorem.

Theorem 10 (solving natural equations for generalized helices with degenerate axis). Let γ

be a null Cartan curve in L
5. Then γ is a generalized helix with null axis if and only if it is

a geodesic of a Lorentzian-ruled surface whose directrix is a timelike generalized helix in L
5

(with null axis and constant first curvature) and whose rulings have the direction of the axis.
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